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Abstract

We present a new class of algorithms for determining whether
Rn

there exists a point x c R satisfying the nonlinear inequality con-

straints ci(x) : O, i = 1, ..., m, subject perhaps to satisfying

linear inequality constraints Zj(x) 0, j = 1,.... ,k which are known

to be feasible. Our algorithm consists of solving a sequence of

linearly constrained optimization problems, using a sequence of

objective functions q(x,p) which are at least twice continuously

differentiable, and which are generated by monotonically increasing

the value of the non-negative parameter p. It is shown that in

almost all cases, once p reaches or exceeds some finite value, that

the solution to the linearly constrained optimization problem

either is a feasible point, or, establishes the infeasibility of the

set of constraints. Computational results are presented in which

the algorithm performs satisfactorily on feasible and on infeasible

systems.

I
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1. Introduction

In this paper, we present and analyze a new class of algorithms

for determining whther a system of linear and nonlinear inequality

constraints has a feasible point. The general problem we consider is
Rn

Given D z Rn, ci: D - R, i = 1, ..., m

Does there exist any x e such that (1.1)

ci(x) 5 0, i = 1, ..., M?

The m functions ci(x) are called constraint functions, or simply con-

straints. If the answer to (1.1) is yes, the set of constraints {ci}

is said to be feasible, otherwise it is said to be infeasible. These

definitions are made formally in Definition 1.1.

Problem (1.1) has many applications. Our original interest

came from the static software validation project at the University of

Colorado at Boulder, where (1.1) arises when determining satisfiability

of path constraints (see e.g., [ 3]). In this case, many of the con-

straints are linear. Since problem (1.1) is easily solved in the

linear case, it is advantageous to treat linear constraints separately

from nonlinear ones. Also, in most applications of (1.1) it is

necessary that the algorithm actually return a feasible x when the

answer to (1.1) is yes. Thus the form of problem (1.1) we will address

is:

Rn

Given D R,

nonlinear constraints ci : D - R, i = 1, ..., m

linear constraints zj: D + R, j = 1, ..., k

I) Determine whether there exist any x D such that
(1.2)

Zi(x) 0, j = 1, ... , k

(and if so:)

'1 N
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II) Either

a) Find an x D such that c 1(x) 5 0, i I, .. ,M

subject to Z.i(x) ! 0, i =1, .. ,k

Or

b) Determine that rno such x exists

Part I of problem (1.2) is simply phase I of linear programmning,

and there exist r,',any reliable codes to solve it (see e.g., [4]). Thus

o~ir research is concerned solely with the solution of part 11 of (1.2)

in the case when the linear constraints are feasible. It should be

noted that our t:heret- cal results remain valid and our compater al-

gorithm perform~s Just as well in the case k = 0, i.e., no linear con-

T1- e reader mcy notice from the wording of problem (1.2) that we

have attemnpted to cc:rstruct a global algorithm i.e., one which solves

(1.2) over the cant-Ire domnain DJ, as opposed to a local algorithm, i.e,

one which solvL:. (1.?) in a neighborhood of the starting point. While

we ilnl iz .-a~ lroroof global algorithm -for sucn a nonlinear pro-

K-i :2e hove developed our algorithm with a global

scittron ~n minc, &nd is practice have been rather successful. We have

a ~%~yi r :tr lvno special structure, inclucing concavity or

c~l(\~,cn i:ie runlinear constraints c.i(x). In the applications we

hav o.n, it roa'@0sniible to assume that each c . is twice continuously

'~.iya l~v..che computer program described in this paperfmakes of; n t:'! i -o,.mnption. However, the theoretical results of this

papedr do ntv' ovcn r( uire c . continuous. Other than this we make no

Las;umip t jon ijo), ' the nonlinear constraints.
V Thore doe--, not appear to be much previous work on problem (1.2),
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especially in the generality in which we are interested. A paper of

Robinson E I] discusses a local method for finding a feasible point,

assuming one starts close enough to one. Several other people, includ-

ing Bertsekas [1] and Charalambous and Conn [2] have developed algorithms

wiaicn mc,i be appilied to problem (1.2). The first approach would require

optiization subject to nonlinear inequality constraints, the second,

op.imization of an objective function which is not continuously differen-

tidbie. Our approach differs strongly in that its optimization problems

invelve twit(" continuously differentiable objective functions, and only

1inei)r constraints.

The remainder of this paper is organized as follows. In Section 2

,i~e ,-i present a new class of algorithms for solving problem

1,2) ',- . it involves a "weighting function" which is only required

.- iufy ome very general properties. In Section 3 we prove a num-

!)-, : i theoretical properties of our class of algorithms, which show

Sthey work -successfully in almost all cases. Section 4 discusses

. i';,(" of the weighting function in practice. Section 5 describes

:,,,c:s *f our computer algorithm, and presents some computational

r .....1 Section 6 we summarize our work, and discuss the directions

,17,, ,:',in,,ing research in this area.

..: coic ude this section with a formal definition of the con-

-,of foa--i;'ility and infeasibility, which were described in the

bprl, p-,rcag',ph. In addition, we introduce the terms strictly feas-

j ile, strictly infeasible and exactly feasible, which will be important

i ur, dis,,:us ions in Sections 3 and 4. Informally, a set of constraints

Is ,LH'Ctly 'Uasible if it has a feasible point where in addition no

c. i'raint is equal to zero; it is strictly infeasible if it is
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infeas-,bl - and (i d.s not come arbitrarily close to feasibility. It is

e.xactly feasibL-,e if it is feasi le but not strictly feasible.

Definition - Dt L K n, anc "et c.. D - R, i =, ... , m. The

St U iui s~ si 5Sid to be

,easible -xists x c- D such that ci(x) - 0, i = 1, ... , m

infeasiier . is not feasible, i.e., for all x E D,
l~dX l

st _ 'uIee ex-sts < 0. x D such that ci(x) ,

si ; LI-P if thpre exists 6>0 such that for all

i>,.jc'i's . ii , is E DI si but not strictly feasible.

Given an s sid . e

11;rCtl ,,:;}it 1,,"- e eists x D such that cix W !5

-,, IL L

.. , -it L ri '. exists x D 0 such that

° b, .if -e lomain s losed and bounded, then a set of

con;trai,l,,; wr inrfeasi lIe iust oe strictly infeasible. On a

(ornutrw, i i sonnbl e to IssuII(e that the domain is closed, with

S, 4 )nj . <df ed In , s, ite value by the largest floating

i i', n:qti . '  i = '. 1i. "ss., iL is reasonable to assume in

;-ct ,. i , ,i e problei-is are strictly infeasible.
I *

ix
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2. The new class of algorithms: a weighting function-penalty approach

In this section, we introduce our new class of algorithms for

solving problem (1.2), part II (henceforth called (1.211)). Because

it is somewhat complex, we motivate it by first describing an algorithm

for a simpler problem. Our final algorithm is built around this simpler

one.

Suppose first we wanted to solve problem (1.211) with only one

nonlinear constraint, i.e., m = 1. One can do this using well-known

techniques, by simply solving the linearly constrained optimization

problem

min c(X)

x c D (2.1)

subject to Zj(x) 0, j = 1, ..., k

If at the minimum x, of (2.1), c1(x,) is nonpositive, then the set of

constraints {c1,Z1,...,Zk} is feasible, otherwise it is infeasible.

Notice, however, that if we desire a global answer to the feasibility

problem (i.e., over all xsD), then we will require the global minimum

to (2.1). Also, if c1(X) is not convex, then our linearly constrained

optimization routine cannot assume convexity.

A computer program to solve (2.1) under these conditions is,

perhaps surprisingly, the key piece of software in our algorithm to

solve the more general feasibility problem (1.211). This is because

our algorithm for solving (1.211) turns out to consist of solving a

series of problems of form (2.1). Furthermore, if we can successfully

find the global minimum to the problems of form (2.1), then it turns

out that we can find the global solution to (1.211). (Otherwise we

[, at least solve (1.211) over whatever domain our linearly constrained

1.
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optimization algorithm is actually able to find its minima on.) Thus,

the global aspect of our original problem is reduced to a somewhat

more manageable framework.

Our algorithm for solving (2.1) is discussed in Section 5. In

brief, we use the best existing techniques for finding a local minimum

to (2.1) (see e.g., [6,7,8] ), modified if necessary in the face of

nonconvexity, and then restart in some other region of the domain if

either curvature information accumulated during the local algorithm, or

a sampling of points, indicate that a lower minimum may be found there.

The routine has been quite successful in our tests.

Now consider the general case of problem (1.211) with m > 1. It

can also be reduced to the solution of a linearly constrained optimi-

zation problem in at least two ways. While they are not quite what we

want, they lead the way to our algorithm. The first way is to solve
m+

min i(x) . ci(x)(

xD 1 (2.2)

subject to tj(x) 0, j =1, ... , k
j

where ii(x) ci(x) > 0

(i ci(x) 0.

If the minimum value of is zero, then (1.211) is feasible, otherwise

is is infeasible. The second way is to solve the "minimax" problem

min 2(x) = max ci(x)

xED Ii .m (2.3)

subject to Z(x) 0, j = 1, ... , k.

f If the minimum value of 02 is nonpositive, then (1.211) is feasible,

4 otherwise it is infeasible.

'I .
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The problem with both of these approaches is that they involve

objective functions €1 and 02 which are not continuously differentiable.

Standard software for linearly constrained optimization, including ours,

does not work on such problems, and modifying it to be successful is

difficult. However, (2.2) especially suggests a related idea which is

the basis of our algorithm: to solve a problem of the form

m
min *(x) =  w(ci(x))

xED i=1 (2.4)

subject to Zj(x) <_ 0, i = 1, ... , k

where w: R + R is a weighting function which penalizes positive con-

straint values and rewards negative constraint values. The type of

weighting function we will use is drawn in Figure 2.1, and formally

defined in Definition 2.1. The most obvious example is w(y) = ey - 1,

but many other possibilities are also discussed in Section 4.

w

Figure 2.1 - A weighting function

Definition 2.1. A weighting function is a function w : R - R which obeys:

1) w is twice continuously differentiable.

2) w(O) : 0.

F3) w is monotonically increasing (i.e., w'(y)>0 for all yeR).

, it
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4) w is strictly convex (i.e., w" (y) > 0 for all y E R).

5) there exists finite t < 0 such that lim w(y) = Z.

6) 11m w(y) = +
y -+C

Note that property 6 is actually implied by the other properties.

Since w is twice continuously differentiable, problem (2.4) can

be solved using our linearly constrained optimization software. Now

let us see what information its solution gives us about the original

feasibility problem (1.211). Let us call the point at which (2.4)

attains its minimum x,. If (x,) > 0 then, just as in problems (2.2)

and (2.3), (1.211) must be infeasible. This is simply because if a

feasible point T exists, then (i) 0 by properties 2 and 3 of w, and

so *(x,) would have to be negative. However, if O(x,) < 0 then there

are two possibilities: x, may be feasible, or some constraints may

be positive and others negative at x,. In the final case, the solu-

tion to (2.4) does not give us the solution to feasibility problem

(1.211).

These possibilities are summarized below:

Let x, be the solution to (2.4) where w: R R obeys Definition

2.1. Then exactly one of the following is true:

i. o(x,) > 0 : this implies (1.211) is infeasible.

2. ¢(x,) : 0 and x, is feasible: a feasible point to (1.211)

.1o has been found.

3. O(x,) 5 0 and x, is infeasible: (1.211) may be feasible or

infeasible.

Only the third case is unsatisfactory. To remedy it, we make

one final addition to our process: we solve a sequence of problems
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of form (2.4), using a sequence of weighting functions obeying

Definition 2.1. These weighting functions successively penalize

constraint violation more and more, and reward constraint satisfaction

less and less. In this manner, they attempt to make any feasible point

more attractive to problem (2.4) than any infeasible point. A rep-

resentative sequence of such weighting functions is drawn in Figure 2.2;

it is shown how to easily construct such sequences in Lemma 2.2. The

key results of this paper (in Section 3) then show that by solving

such a sequence of problems (2.4), we eventually end up with a solu-

tion x, to (2.4) which falls into Case 1 or 2 above, instea of Case 3.

Thus, we solve the feasibility problem (1.211). (In practice, at

least over the domain on which we solve the minimization problems.)

Intuitively, this may also be viewed as saying that as our weighting

function becomes shaped more like a backward "L," problem (2.4)

comes to resemble problems (2.2) and (2.3).

w w3(y) w (Y) w1(y)
/ 0*f

0f
*J

Figure 2.2 - A sequence of weighting functions

A family of weighting functions like the one in Figure 2.2 is

constructed using a standard result from convexity theory ( see e.g.,
P' tl[12]): if w(y) is any function satisfying Definition 2.1, and {pi }
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is any monotonically increasing sequence of positive real numbers,

then the functions

wi(y) = w(pi .y) i = 1, 2, ... (2.5)

Pi

have monotonically increasing values on each nonzero y (as well as each

trivially satisfying Definition 2.1). This is proven in somewhat

more generality in Lemma 2.2.

Lemma 2.2 Let w: R - R be continuously differentiable and strictly

convex, and assume w(O) = 0. Let p+ > p > 0. Then for any y c R,

w(p+'y) w(p'y)

P+  P

with equality if and only if y = 0.

Proof: If y = 0 the lemma is trivially true. Now suppose y * 0.

Since w is continuously differentiable and strictly convex,

w(z) - w(x) > w'(x) (z-x) (2.6)

for any x,zER, x z. Substituting x = p.y, z = p+.y into (2.6) gives

w(p4 y) - w(py) > w'(py) • (p+ -P) y. (2.7)

Also, substituting x = py, z = 0 into (2.6) and using w(O) = 0 gives

-w(py) > -w,(py) • py

or

w' (py)-y ? (2.8)
p

Combining (2.7) and (2.8)

w(p,y) - w(py) > w(pyi (p'-p) = w(py)p .  w(py)
p p

or equivalently

w(p4.y) > w(.

r ,P+ P

I. i p4
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By solving a sequence of problems of form (2.4), with the weight-

ing functions constructed according to (2.5), we have completed the

development of our class of algorithms for solving feasibility pro-

blem (1.211). It is given below. The parameter p is called by

that letter because it resembles the penalty parameter found in

various mathematical programming algorithms. D, ci(x) and tj(x)

are defined as in problem (1.2), and we assume that the linear con-

straints have been found to be feasible in problem (1.2), part I.

Algorithm 2.3 - - A weighting function-penalty algorithm for de-

termining feasibility of a set of nonlinear and

linear inequality constraints (problem (1.211)).

1. p = 0

2. solve min (x,p) = L J w(p-ic1))

subject to Zj(x) 0 j = 1, ..., k

say the minimum occurs at x,(p)

3. if O(x,(p),p) > 0, stop (constraints are infeasible)

else if x,(p) feasible, stop (feasible point found)

else increase p and return to step 2

Note that Algorithm 2.3 starts with p = 0. Since w(O) = 0,

¢(x,O) = 0/0, but L'H6pital's rule shows that
m

0(x9O) = w'(O) * Z ci(x) (2.9)
i=1

where w'(0) is some nonzero constant. So (2.9) is the first objective

function used in step 2 of Algorithm 2.3. There are two advantages

to starting with this objective function. First, the first linearly

Iconstrained optimization problem to be solved becomes a reasonably
4nice one, and yet its solution often establishes feasibility or
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infeasibility in practice. Second, when m = 1, Algorithm 2.3 reduces

to the algorithm proposed at the beginning of this section for solving

(1.211) with one nonlinear constraint.

The most important fact about Algorithm 2.3 is that it will now

be shown in Section 3 that it is guaranteed to produce a feasible x,

or establish infeasibility of the nonlinear constraints as soon as p

reaches or exceeds some finite threshhold. (There is one exceptional

case.) Thus, while one might fear that Algorithm 2.3 would only give

the answer to the original feasibility problem (1.211) in the limit

as p -, it in fact gives the answer for finite p, and this is the

key reason why it is an effective computational algorithm. We there-

fore feel that our class of algorithms is much more similar in its

penalty characteristics to the "augmented Lagrangian" or "method of

multipliers" methods for constrained optimization (see e.g., [10]),

which are also guaranteed to terminate satisfactorily for finite p,

than to the classical penalty or barrier algorithms for constrained

optimization (see e.g., [ 5,9]) which only produce the correct

answer in the limit as p - -. It will be seen in Section 5 that

typically few (1 to 3) values of p are required in practice.

:1
[2

p,
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3. Termination properties of the new class of algorithms

In this section, we establish the key property of the class of

algorithms introduced in Section 2 (Algorithm 2.3) for determining

feasibility of a set of nonlinear inequality constraints: that in

almost all cases, the algorithm is guaranteed to either produce a

feasible point, or establish infeasibility, as soon as the parameter

p reaches or exceeds some finite value. This is proven in Theorems

3.4 - 3.6. Before this we prove two fundamental properties of our

class of algorithms. We conclude the section by discussing the termin-

ation criteria which are used in the computer implementation of our

algorithm.

For the purposes of this arid the next section, there is no reason

to make explicit mention of the linear constraints .j(x), j = 1, ..., k.

Rather, we will assume that the domain D has been restricted, if

necessary, to exclude any point x where some Z(x) > 0. This simplifies

our notation, and allows us to use the definitions of feasibility and

infeasibility from Definition 1.1 without making any modification due

to the linear constraints. Using this convention, an iteration of

Algorithm 2.3 consists simply of minimizing O(x,p) over xeD. We

will again define the point when this minimum occurs as x,(p), and

for brevity will refer to the minimum value O(x,(p),p) as 0,(p).

This notation is summarized below.

Definition 3.1 Let D e Rn, ci : D - R, i = 1, ..., m, and let

w : R R. For p > 0, the composite weighting function ¢(x,p)

is defined by

:i
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For p = 0, O(x,p) is defined by
m

O(xO) = lim .O(x,p) = w'(0) ci(x).
p 0 i=1

For p 0, we define

x,(p) = min (x,p)
xE D

and

O,(p) = c(x,(p),p).

In Lemma 3.2 we prove a property of our class of algorithms

which was informally indicated in Section 2: that if {ci} is feasible,

then 0,(p) is nonpositive for all p 0. This leads directly to the

criterion which is used to establish infeasibility in our class of

algorithms: if 0,(p) is positive for any p 0, then {ci} must be

infeasible.

Note that the lemmas and theorems of this section assume only

those properties of w(y) which they actually use. However, taken

together they require all the properties from Definition 2.1 except

for w"(y) continuous. This is required only by tne linearly con-

strained optimization algorithm. Recall also that while in theory

our results are true over the entire domain x c D, in practice they

may only be valid over whatever domain D c D the linearly constrained

optimization routine can in fact find the minima of 4(x,p). That is,

j if the algorithm finds a feasible point the problem is of course

feasible, but a claim of infeasibility may only be valid over the

domain on which we are actually able to solve the minimization problems.

Lemma 3.2 Let w : R - R satisfy w(O) = 0 and w(y) < 0 for all
y < 0, and let ci(x), *(x,p), x*(p), o,(p) be defined by Definition

3.1. If {ci} is feasible, then for any p 0, **(p) 0. If {c i is
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strictly feasible, then for any p 0 0, ¢.(p) < 0.

Proof: If {ciI is feasible, then there exists some x such that

ci(X) 0, i = 1, ..., m. Thus, O(x,p) 5 0 for any p 0 0, and since

by the definition of 0,(p), *.(p) ¢(x,p), we have 0.(p) ! 0. The

strictly feasible case is proven identically.

A question which might arise following Lemma 3.2 is: if

0.(p) > 0 for some fixed p e 0, is it possible that for some p+ > p,

.(p+) :5 0? If this were possible, then our test for infeasibility

would be rather chancy, as we might "skip by" the choice p which would

establish infeasibility, and use instead the choice p+ which doesn't.

Luckily this is not possible, because it is an easy consequence of the

relation of successive weighting functions (Lemma 2.2) that o.(p)

increases monotonically with p. (The one exception is that 0.(p)

can remain zero for two successive values of p, in which case the

second optimal point, x.(p+), must be feasible). This is proven in

Lemma 3.3.

Lemma 3.3 Let w : R - R satisfy the assumptions of Lema 2.2, and

let ci(x), ¢(x,p), x.(p), ¢.(p) be defined by Definition 3.1.

Let p+ > p > 0. Then

(P) ¢*(p)

with equality only if ci(x*(p+)) = 0, i = 1, ..., m.

j Proof: From Lemma 2.3

w(p+.ci(x*(P+))) w(p'ci(x*(P+))) (3.1)

P+ p

[ i = 1, ..., m, with equality if and only if ci(x*(p+)) = 0 for all i.

Summing (3.1) for i going from 1 to m yields

o.(p+) O(x.(p+),p) (3.2)
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with equality if and only if ci(x*(p+)) 0 0, i = 1, ... , m.

Also, by the definition of 0,(p)

O(x,(p+),p) ! ,(p) (3.3)

Combining (3.2) and (3.3) completes the proof.

Lemmas 3.2 and 3.3 give some insight into why Algorithm 2.3 will

eventually solve the feasibility problem (1.211). Since the minimum

value of O(x,p) is a monotonically increasing function of p, and

since if 0,(p) is positive for any p then the constraints are infeasible,

we see that a kind of "squeeze play" is going on: as p increases, either

0,(p) will become positive, or if the constraints are feasible, 0,(p)

will have to stay nonpositive. In the latter case, the weighting

function will force x,(p) to eventually become feasible, because it

will cause any infeasible point x to eventually have O(i,p) > 0.

This argument is the essense of our proofs that Algorithm 2.3

solves the feasibility problem (1.211). The remaining important fact

is that if {ci} is strictly feasible or strictly infeasible, Algorithm

2.3 will terminate satisfactorily as soon as p reaches or exeeds some

finite value. This is proven in Theorems 3.4 and 3.5. In Theorem 3.6

we prove a slightly weaker result in the case when {ci} is exactly

feasible (feasible but not strictly feasible). Recall that these

three cases cover all possibilities, as the case of {ci} being infeas-

ible but not strictly infeasible is impossible as long as D is closed

and bounded.

Theorem 3.4 proves the finite termination of Algorithm 2.3 if

(c } is strictly infeasible. The proof basically proceeds by showing

that due to the nature of the weighting function, eventually O(x,p) > 0

for any strictly infeasible point x.
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Theorem 3.4. Let w: R R be a monotonically increasing function

of y, and assume lim w(y) = Z for some finite t < 0, lim w(y) = + -.

Let ci(x), (x,p), x,(p), 0,(p) be defined by Definition 3.1.

If (ci} is strictly infeasible, then there exists p, 0 such that

for any p pl' o*(p) > 0.

Proof: Since {ci} is strictly infeasible, there exists 61 > 0 such

that for all x E D, ci(x) > Sl for at least one i. Lety, bechosensuch that

w(yl) -(m-1). (3.4)

and define p1  y l/ 61. We show that for any p pI, *(p) > 0.

Since {ci} is not within 61 of feasibility, by the monotonicity

of w we have

O,(p) > (m-1)z + w(p6 I)

From the definition of p1 and yl and the monotonicity of w,

w(P61 ) > w(pi61) = w(yI) > -(m-1)I (3.6)

Combining (3.5) and (3.6) completes the proof.

Theorem 3.5 proves the finite termination of Algorithm 2.3 if

{ci } is strictly feasible. The proof basically procedes by showing

that due to the nature of the weighting function, eventually

O(i,p) > 0( ,p) for any infeasible point x and any strictly feasible

point x.

Theorem 3.5. Let w : R -) R be a monotonically increasing function

of y with w(O) = 0, and assume im w(y) = Z for some finite Z < 0.

Let ci(x), (x,p), x,(p), , be defined by Definition 3.1. If

{ci} is strictly feasible, then there exists P2  0 such that for any

P t P2' x(p) is feasible.

'1
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, Rn

Proof: Since {ci} is strictly feasible, there exists £2 < 0, X2 R

such that ci (x 2 )  = 1, ... , m.Let Y2 be chosen such that

w(y2) (m-1)Z (3.7)
m

and define P2 = Y2/£2 " We show that for a;y p P2' x,(p) is feasible.

Suppose that for some p P2' x,(p) is infeasible. Then since

at least one constraint is infeasible at x,(n) and w(y) > 0 for all

y > 0,

>p (m-1) . (3.8)

p
Also, from the definition of x2 and the monotonicity of w,

(x2,P) m(w(PE 2)) (3.9)

p

From the definitions of P2 and Y2 and the monotonicity of w,

w(PE 2) w(P2E2) = w(Y2) (m-1)Z (3.10)
m

so that from (3.9) and (3.10)

(x2 P) :5 m - (3.11)

p

From (3.8) and (3.11), (x2,p) < ,,(p) which is a contradiction and

completes the proof.

The remaining case is when {ci.is exactly feasible. While this

case may not be very meaningful in finite precision arithmetic, results

indicating how Algorithm 2.3 performs on it in theory should indicate

how it will perform on "close to exactly feasible" problems in practice.

In Theorem 3.6 we show that if {ci} is exactly feasible, then given

j any 6 > 0, Algorithm 2.3 is guaranteed to produce an x,(p) that is

within 6 of feasibility as soon as p reaches or exceeds some finite

limit. We comment on the optimality of this result after the proof.

The proof of Theorem 3.6 is closely related to that of Theorem 3.4.
*1
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Theorem 3.6. Let w : R * R satisfy the assumption of Theorem 3.5,

and assume in addition that lim w(y) = + -. Let ci(x), *(x,p)
y + MI

x.(p), $.(p) be defined by Definition 3.1. If {ciI is feasible,

then given any 63 > O, there exists p3 -O such that for any p :pP31

x.(p) is within 63 of feasibility.

Proof: Let y, be defined by (3.4) and define P3 = Yl/6 3 " We show

that for any p P3' x.(p) is within 63 of feasibility.

Suppose that for some p P3' x.(p) is not within 63 of

feasibility. Then ci(x.(p)) > 63 for at least one i, and so using

the monotonicity of w,

p.(p) > (m-1)Z + w(p. 63) (3.12)

p
From the definitions of p3 and y, and the monotonicity of w,

w(p-.63) w(P3 63) = w(y1) -(m-1)Z (3.13)

so that from (3.12) and (3.13)

0(p) > 0. (3.14)

On the other hand, we have from Lemma 3.2 that

.(p) : 0

which contradicts (3.14) and completes the proof.

Theorem 3.6 implies that the limit of the points generated by

Algorithm 2.3,

x* = lim x*(p)

j will be feasible for exactly feasible problems. This is a weaker

result than for strictly feasible problems. Thus a reasonable

F, question to ask is whether our result for strictly feasible problems

can be extended to exactly feasible problems, i.e., whether there

,4 will exist any finite p such that x.(p) is feasible in this case.

L
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Example 3.7 shows that the answer is no for some exactly feasible

problems, but yes for some others. Thus Thecrem 3.6 is the best

result we can prove about our algorithm's performance on exactly

feasible problems in general, but the algorithm may do better on

some exactly feasible problems.

Example 3.7. Assume w satisfies Definition 2.1, let ci(x), O(x,p),

x,(p), 0,(p) be defined by Definition 3.1, and assume the set of

constraints {ci} is exactly feasible. Then it is possible that

x,(p) is infeasible for all p > 0; it is also possible that x,(p)

is feasible for all p > 0.

This is shown via 2 examples. Consider first

c1(x) =I -x
3

c2(x) x -1

which has its sole feasible point at x = 1. For p = 0, x.(p) is

undefined. For p > 0, x.(p) must satisfy

d *(x,p) = 0 = -3x2w'(p-px3) + 2xw'(px2-p).
dx

It is clear that x 1 is never a solution to this equation, as this

would imply -wl(o) = 0 which contradicts the monotonicity of w.

Thus x.(p) must be infeasible for all p > 0. Incidentally, for

sufficiently large p,

x*(p) 1,O
1 3pw '(o) -3w' (0)]

so that lim x,(p) 1.
pI+

Now consider

F Cl(X) = 1-x3

c2(x) x 
-

o-2(x X
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which also has its sole feasible point at x = 1. For p = 0, x,(p)

is again undefined. For p > 0

O(xp) = w(p *cl(x)) + w(p -c2(x))

p (3.15)

= w(p *cl(x)) + w(-p cl(X))

P

From w(O) = 0 and w strictly convex, we have

w(a) + w(-a) - 0

for any a E R, with equality if and only if a = 0. Thus for any

p > 0, the unique minimum to (3.15) occurs when p. cl(X) = 0, i.e.,

when c1(X) = c2(x) = 0. Thus x,(p) = 1 for all p > 0.

Theorems 3.4 - 3.6 show that Algorithm 2.3 will solve the

feasibility problem (1.211) correctly. However, in the exactly

feasible case this may only be true in the limit as p-+-; correspond-

ingly, if {ci} is strictly feasible only for very small (in absolute

value) negative c, or strictly infeasible only for very small positive

6, the correct solution may require p to be very large. In practice,

one probably wants to limit how large p can get in Algorithm 2.3.

Therefore, in our computer implementation of this algorithm, we have

changed the termination criteria to:

if ,(p) > 0, stop (constraints are infeasible)

if x,(p) is feasible or within 6 of feasibility, stop (3.16)

(constraints are considered feasible)

where 6 is a small positive number. It is shown in Theorem 3.8 that

[Algorithm 2.3 with stopping criteria (3.16) is guaranteed to terminate
as soon as p reaches or exceeds p = yi(m+1)/16, Y, given by equation

4 (3.4). The algorithm will be guaranteed to produce the correct result
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to feasibility problem (1.211) unless {ci} is infeasible but within

6 of feasibility. If 6 is a small number, then for most applications

this uncertainty will be acceptable, and in some applications we have

seen this "benefit of the doubt" is even desirable. A possible dis-

advantage is that some applications really need a feasible point if

one exists, and an x,(p) which is infeasible but within 6 of feasibility

will not do. In the unlikely event that this occurs, one can continue

to iterate Algorithm 2.3 in the hope that it will find a feasible point.

Theorem 3.8. Let w : R-R satisfy the assumptions of Theorem 3.6,

and let ci(x), (x,p), x,(p), 0,(p) be defined by Definition 3.1.

Then given any 64> 0, there exists P4  0 such that for any p ?p4,

either ,(p) > 0 or x*(p) s within 64 of feasibility.

Proof: Let yl be defined by (3.4) and define y = 64/ (m+1),

P4 
= Yl / y. Our proof is divided into two cases. We show that if

{ci)is notwithin y of feasibility, then I,(p) > 0 for any p P4, and

that if {ci} is either feasible or within y of feasibility, that x,(p)

is within 64 of feasibility for any p P4.

If {ci} is not within y of feasibility, then it is shown in Theorem3.4

that 0,(p) > 0 for any p P4. Now consider the other possibility,

that {ci} is feasible or within y of feasibility. Then there exists

x4 such that ci(x 4) y, i = , ... , m, so that for any p > 0,

o(x4,p) ! m.w(py) . (3.17)
p

Now suppose that for some p ? P4 9 x,(p) is not within 64 of feasibility.

Then by the monotonicity of w,

,,(p) > (m-1) +w(p6 4) (3.18)

p

- 1
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Since w is strictly convex and w(O) = 0,

w(P64) > (m+1) w P654  
=  (m+1) w(py) (3.19)

so that combining (3.18) and (3.19)

0.(p) > [(m-1)t + w(py)] + m w(py) (3.20)

p

Also by the monotonicity of w and the definitions of P4 and Yl,

w(py) ? w(P4y) = w(y) -(m+1)Z (3.21)

so that combining (3.20) and (3.21),

0,(p) > m (3.22)

p

However, from (3.17) and (3.22), (x4'P)< ,(p) which is a contradic-

tion -nd completes the proof.

A logical question to ask now is: since Algorithm 2.3 using

stopping criteria (3.16) is guaranteed to terminate for p= Y1(m+l)/S,

where y, is readily calculated given w and m, why not just solve the

linearly constrained optimization problem (2.4) with p = p, instead

of executing Algorithm 2.3 which solves (2.4) for a sequence of p's?

There are two reasons. First, since O(x,p) becomes more poorly behaved

as p increases, it may be easier to solve (2.4) for a sequence of p's

terminating with p = p, using the solution to each as the starting

guess to the next, than to just solve the problem with p = p. In

practice, linearly constrained optimization problems after the first

j in Algorithm 2.3 require few iterations. Second, it is very possible

that Algorithm 2.3 will terminate for some p < p.

Another important question which we have not yet addressed is

whether our techniques can be used to obtain a strictly feasible

1t

I'
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point in cases when {ci} is strictly feasible. The answer is yes,

but how strictly feasible turns out to depend on the weighting func-

tion w(y). This is one aspect of the choice of the weighting function

which is discussed in Section 4.

I
K
'4

£
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4. Choice of the weighting function

In Algorithm 2.3 we have proposed a class of algorithms for

solving the feasibility problem (1.211). This class involves a

weighting function w(y) which must obey Definition 2.1, with a specific

algorithm involving a specific choice of the weighting function. In

Section 3 we have proven that any algorithm from this class will

successfully solve the feasibility problem. In this section, we dis-

cuss the choice of the weighting function w(y). First, we show that a

variety of functions exist satisfying Definition 2.1. Then we examine

which of these is likely to cause quicker termination of Algorithm 2.3.

Finally, we analyze (in Theorem 4.1, Corollary 4.2 and Example 4.3)

the influence of the weighting function on the ability of Algorithm

2.3 to find an interior point to a set of strictly feasible constraints.

From these considerations, a preference emerges for the weighting func-

tion to use in practice.

The simplest (to write) function which satisfies Definition 2.1 is

w1 (y) = ey -1.

Indeed, w1 (Y) and its related multiples and powers are the only

infinitely differentiable functions we know of which satisfy Definition

2.1. However, many twice continuously differentiable functions

satisfying Definition 2.1 can be constructed by "splicing together"

two functions. For example, one can let w(y) =y for y c <1,
1-y

and then join it to a quadratic for y 2 a in a way which makes w(y)

j twice continuously differentiable. This is done bel3w and drawn in

Figure 4.1.

'I

'I
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y yy a

w2(Y) =-

3 + -

(1 -a) (I -)2 1-a Y c

* w

w2(Y) (solid line)
• I

• /I

0 Y
y

Figure 4.1

In the same manner one can form a weighting function by splicing

together (ey -1) and a quadratic at a point a > 0. This is done in

w3 (y) and drawn in Figure 4.2. Function w3 (y) may be preferable to

,I(y) in practice because it grows less quickly for large y and thus

diminishes the chances of overflow or badly behaved optimization

problems in Algorithm 2.3.

I

II

! ,if_
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Y) : ey - 1Y!5B >O0

W3 (y_ (y)2 e(Y-) + e - y

w
* I
* I

/ w3(y) (solid line)

Figure 4.2

Certainly other functions satisfying Definition 2.1 are

possible, but for our purposes it will suffice to consider these three.

In particular, much of our analysis turns out to concern only the por-

tion of w(y) for y !5 0, and herE the functions w I(Y) = ey - 1 and

w2(Y) = y/(1-y) seem to be the two important possibilities.

One way to compare the weighting functions is to examine the

upper bounds produced by Theorems 3.4 - 3.6 and 3.8 on how large p

must be to guarantee termination of Algorithm 2.3. These bounds are

all functions of the weighting function, and we are interested in

which weighting function leads to the lowest bounds. The easiest case

I to examine is the upper bound on p when fci } is strictly E feasible

for some 0 . Theorem 3.5 tells us that Algorithm 2.3 is guaranteed

Sto terminate for p t y2/c, where Y2 satisfies

,. w(y 2 ) C m-)

m

• i iHi |
-- -. .. .... .. . . I - . .. . .. .. ' . . .. . .
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If w(y) = ey -1 for y < 0, it is easily calculated that Y =-1 and

Stn m.Y2 = - Inm

If w(y) = y/(l-y) for y < 0, again Z = -1 and

Y2= -(m-i).
Since Znm<m-1 for all m 2 2 (and recalling E<O) we see that the

upper bound using ey - 1 is less than the upper bound if one uses

y/(1-y). Note that this analysis only involves the portion of w(y)

for y < 0. Thus using w(y) = ey -1 for y < 0 may be preferable to

using w(y) = y/(1-y) for y < 0 on strictly feasible problems.

Now consider the bound given by Theorem 3.4 in the case when

{ci} is strictly 6 infeasible for some 6 > 0. The theorem says that

Algorithm 2.3 is guaranteed to terminate for p y Yl/ 6, where Yj

satisfies

w(yI) = -(in-i) e.

If w(y) ey -1 then

Yl = Zn m.

If w(y) w2(y) then

m m

Y -I + 1 - a 1 - 3 a sm-1
2 2 m

Thus the situation here is less clear cut than the above. If

a > (m-I)/m, then the upper bound for w2(y) clearly is less than

the upper bound for w1(y). If a < (m-1)/m then the bound for w2 (y)

may exceed the bound for w1(y. The bound for w3(Y) is always greater

[ than or equal to the bound for wl(Y). Note that this analysis only

involves w(y) for y > 0.

I
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However, the selection of the weighting function for y > 0 is

complicated by the presense of two conflicting considerations: the

more quickly w(y) increases, the lower will be the upper bound on p

required by Theorem 3.4, but the larger will be the chance for over-

flow or bad behavior in the objective function O(x,p) if p does be-

come large. So while we could always set a > (m-l) / m and thus have

a smaller y, for w2(Y) than for w1 (Y) or w3(Y), we might not want to

do this because it might make w(y) too steep for y 5 0. Similarly,

Theorems 3.6 and 3.8 show that if we stop our algorithm when x,(p)

is within 6 of feasibility, then the upper bound on p is again pro-

portional to y,, but the same conflicting considerations cloud the

selection of w(y). Thus we believe that only experimentation can

determine which weighting function is preferable for y > 0.

The other important regard in which the selection of the weight-

ing function can influence the performance of Algorithm 2.3 is the

ability of the algorithm to find strictly feasible points when {ci}

is strictly feasible. While Algorithm 2.3 as written will stop as

soon as a feasible point is found, some applications would like a

point which is as feasible as possible. Therefore, we might be

curious whether, if we continue to run Algorithm 2.3 after it has

found a feasible point to a strictly c feasible problem, it will

eventually find an x,(p) which is "almost as feasible as possible,"

i.e., strictly E feasible for greater than but arbitrarily close

to c. Theorem 4.1 enables us to answer this question, by giving a

necessary condition for Algorithm 2.3 to eventually produce a strictly

feasible x,(p) on a strictly E feasible problem for a given P in (c,o).

This condition involves w(y) only for y < 0. Corollary 4.2 then shows
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that w(y) = ey -1 satisfies this condition for any ^ in (c,O). Thus

Algorithm 2.3 with w(y) = ey - I for y < 0 will produce points which

are "almost as feasible as possible." However, w(y) = y/ (l-y) does

not satisfy the condition of Theorem 4.1 for c < /m, and indeed it

is shown in Example 4.3 that continuing Algorithm 4.3 with

w(y) = y/ (1-y) for y < 0 may fail to produce points which are

"almost as feasible as possible."

Theorem 4.1. Let w obey the.assumptions of Theorem 3.5 and define

W(y) = w(y)-Z. Let ci(x), p(x,p), x,(p), ,(p) be defined by

Definition 3.1. Let E < E < 0, and assume {ci(x)} is strictly E

feasible. Suppose there exists P5 - 0 such that for all p >e P5 1

m.A(p ) - (pE). (4.1)

Then for any p a P5' x,(p) is strictly 4 feasible.

Proof: Suppose there exists P5 satisfying the conditions of the

theorem, and that for some p > P5 ' x,(p) is not 4 feasible. Then at

least one constraint has value greater than at x,(p), so that

0,(p) > (m-1)Z+w(p ) = m. t+ (p) (4.2)

p p
, Rn

However, since {ci} is strictly 6 feasible, there exists x5  Rn

such that ci(x 5) , i = 1, ... , m. Thus from the definition of

x,(p) and the monotonicity of w,

.(p m< pM + m. W+m(pE) (4.3)

p p

Equations (4.2) and (4.3) imply that

4(p ) < m.Q (pc)

which contradicts (4.1) and completes the proof.

Corollary 4.2. Let w(y) = ey - I for y < 0, and let ci(x), O(x,p),
I, iiI

. . . .. . .... . --' i - i |1 . . _ . . . ... . . . .. = I : -
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x,(p) be defined by Definition 3.1. Let c < 4 < 0 and assume that

{c i} is strictly F feasible. Then there exists P6 z 0 such that for

all p P6' x,(p) is strictly 4 feasible.

Proof: From Theorem 4.1, it suffices to show that there exists P6

such that for all p P6' (4.1) is true. For w(y) = ey -1, i(y) =e

so (4.1) requires that

me P E < ep

or

m < ep(E)

This clearly is true for any p Znm P6.

Now let us consider what Theorem 4.1 says about the weighting

function w(y) = y/(1-y), y<O. In this case 4(y) = 1/(1-y), and so

(4.1) requires

m 1

I-pE -pE

or

M-I _ p(mA-)

which is only possible if

A
C > C.

m

Thus with this weighting function, Theorem 4.1 only guarantees that

continuing to iterate Algorithm 2.3 on a strictly c feasible problem

will eventually produce an x,(p) which is strictly C feasible for

C > Elm. Indeed, in Example 4.3 we give an example where Algorithm

2.3 does not produce any x,(p) which is strictly (-2.5) feasible on

a problem which is strictly (-3) feasible. For simplicity we let the

SI constraints be linear; more extreme examples are possible for
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nonlinear constraints.

Example 4.3. Let w(y) = -y---for y < 0, and let ci(x), O(x,p),
l -y 1

x,(p) be defined by Definition 3.1. Let c < 0 and assume that {ci) is

strictly E feasible. Then there may exist some e in (c,0) such that

for all p 2 0, x,(p) is not 4 feasible.

As an example, consider

cl(x) = -2-x

c2(x) = -10+7x

(See Figure 4.3)

0

-2

x)

Figure 4.3

This set of constraints is clearly strictly E feasible for F=-3,

1as c1(1) c2(1) = -3. However, it will be shown that x.(p) 2

for all p 0 0. Thus x.(p) is not E: feasible for any r s -2.5. The

proof of this is as follows.

f For p = 0, x,(p) is undefined. For p > 0,

I x.(p) = h(p) = (7(1+6p) -V49(1+6p) 2 + 21(3+4p-36p2))/21p

The term h(p) is positive for p > (2/77--1)/ 18 = 0.238, and is

monotonically increasing for p 0 as

'I
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h'() : 1 [ + 24p

h3p) - - +v(7 +24p)2- (64 18p) 2

which is clearly greater than zero for all p 0 0. Finally

lim h(p) = 2- 417 .488 x,
P-- 7

Since c1(x. ) -2.488, it is clear from Figure 4 that no x,(p)

is strictly feasible for any c < -2.5.

Thus with regard to finding interior points, the choice w(y)

ey - for y < 0 seems superior to w(y) = y/ (1-y). This concurs with

our analysis earlier in this section. For y > 0 the issue 4s unsettled

by theoretical analysis. Thus in practice one probably wants to

experiment between w1 (y), w3 (y), and possibly a hybrid which com-

bines ey -1 for y < 0 with a function like w2(Y) for y 0.

It should be mentioned that the class of weighting functions

satisfying Definition 2.1 is not the broadest class of twice con-

tinuously differentiable functions for which the results of this

paper are true. For example, I. Zang [13] has suggested to us that

we consider weighting functions which obey Definition 2.1 except

that they are linear in some intervals. An example (related to one

in [14])is given below and drawn in Figure 4.4.

[I

'I

r______
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-3a
y <-a<O

w4 (Y) _(y +=) + +y3+ 3__ -a<y!5

16 o 3 4 cy 16

y - 3a

w w4(y)

y

Figure 4.4

The class of functions which look like this, that is, obey Definition

2.1 except that they may be strictly convex only in some open neighbor-

hood of y = 0 and convex elsewhere, is a class to which all the results

of this paper are readily extendable. It may prove to be attractive

computational ly.

I

I !
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5. Computational results

In this section we discuss some important aspects of the

computer implementation of our algorithm for solving feasibility,

problem (1.211), and present some sample computational results. Due

to the length of this paper, and because we are continuing to revise

and experiment with the software for our algorithm, our treatment in

this section is brief. A future paper will be specifically devoted

to the implementation and test results of our algorithm.

In implementing Algorithm 2.3, three important aspects need to

be considered:

1. the choice of the weightinlg function

2. the linearly constrained optimization algorithm, especially

the strategy to attempt to find the global minimum

3. the strategy for increasing p.

The choice of the weighting function was discussed in Section 4. In

our implementation so far we have used w(y) = ey -1, which is supported

by our analysis there. We have not had any trouble with overflows

or badly conditioned optimization problems. As is mentioned in

Section 4, we also intend to experiment with the exponential-quadratic

hybrid w3 (y).

The linearly constrained optimization algorithm is the heart of

our computer algorithm. Our requirements for this algorithm are dif-

ferent enough from the stendard ones that we deemed it preferable to

write our own code rather than modify an existing one. In the initial

version of our algorithm, we have developed an algorithm similar to

the ones proposed by Fletcher [6] and Goldfarb [8]. The algorithm

'1

I_____________
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uses finite difference approximations to the first and second deriva-

tives of ¢(x,p) (i.e., of ci(x), i = 1, ..., m) because this is reason-

able in the applications with which we are familiar. If the projected

Newton direction is not a descent direction then it takes a step in

the projected steepest descent direction, although clearly this aspect

of the algorithm can be improved. Otherwise, it attempts to find a

local minimum of O(x,p) with respect to x, in a standard manner. Along

the way, it attempts to obtain information indicating whether a lower

value of (x,p) might exist elsewhere. Information is gathered from

directions of negative curvature (if any are encountered) i.dicating

regions of the domain in which a lower value might be found. Then,

after a local minimum has been found, this information together with

a sampling of points near and far from the local minimum is used to

determine whether a restart of the algorithm in another region is

likely to produce a lower value of 1(x,p). If so, the algorithm is

restarted and this entire process is repeated (possibly more than

once). Such a procedure is certainly ad-hoc and will not work on

every problem, but it has proven successful on the majority of problems

with multiple local minima that we have tried.

Our linearly constrained optimization algorithm also requires

some special features due to the setting in which it is used. Certainly,

if at any stage in the minimization of 4(x,p) the current iterate xc

is feasible, then there is no need to continue the minimization and

so both the linearly constrained optimization algorithm and Algorithm

2.3 are terminated. Secondly, while the value of O(x,p) is bounded

[below for any p > 0, it is possible that it has no finite minimum
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point x, if the domain D is notbounded. This is treated in the standard

way by terminating the local minimization of *(x,p) if successive

iterates of x lead to insufficient decrease in *(x,p). Finally, when
m

p = 0 it is possible that (x,O) = ci(x) is unbounded below if D
i=1

is unbounded, and that the algorithm may pursue an unbounded path with-

out considering any feasible points. Two simple examples are

c1(x) = x2 -1

c2 (x) 
x3

which is feasible and

cl(x) = x2 + 1

c2(x) = 3

which is infeasible. In both cases (xIO) decreases without limit

as x+- , and the algorithm will pursue this path without locating a

feasible point if the initial x is less than-1. Thus our linearly con-

strained optimization algorithm treats the case p = 0 specially, and

in particular, once (x,O) < 0, it detects situations like the above

and terminates the minimization of p(x,O) prematurely. Algorithm 2.3

then increases p and continues.

Our entire algorithm for linearly constrained optimization in the

context of Algorithm 2.3 is currently undergoing major revision, and

will be reported in more detail on in the future. Our initial algorithm

has worked well enough for our implementation of Algorithm 2.3 to

be quite successful.

The strategy for increasing p has been given considerable

attention, although perhaps surprisingly Algorithm 2.3 does not seem

too sensitive to it. At each iteration of Algorithm 2.3, we model the
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function *(P) = o(x.(p),p) by a function m(p), and then choose the next

value p+ such that m(p+) = 0. In this way we attempt to "force the

issue" by either producing a value of 0.(p) > 0, or a feasible x.(p).

The model function m(p) is designed to fit (5.1)

m(pc) = 0+(pc ), m(Pprev) = *(Pprev) , m'(P c ) =__(x,(p),P)Ip=p
dp

where pc and pprev are the current and immediately previous values

of p. The derivative in (5.1) is an easily obtainable approximation to

0,,(pc); in a number of tests taking finite difference approximations

to the latter, we found the two derivatives to be almost the same. While

one can fit (5.1) with a quadratic, it seems preferable to make use of

the problem structure. We currently use

m(p) = cLw (p. ) + y

where a, a and y are chosen to satisfy (5.1); a perhaps more attractive,

but more difficult to obtain, possibility is

, (p) : &WLp.) +
p

If the predicted p+ is not in the range [2p c , lopc we use the appro-

priate extremum of this range as p+. in the initial case (pc = 0)

the model is constructed somewhat differently.

In Tables 5.1 - 5.4 we present four indicative runs of our

initial implementation of Algorithm 2.3. Mainly they illustrate that

the algorithm works in practice about as is predicted by our theory.

What is perhaps most striking in our tests so far is how few values

jof p seem to be required to obtain the correct answer. Table 5.1

and 5.2 illustrate the algorithm on feasible problems. Table 5.1 is

a case where the global characteristics of our linearly constrained

>1
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optimization were required due to the shape of the tilted sine function.

Tables 5.3 and 5.4 illustrate the algorithm on infeasible problems.

Table 5.4 is interesting because the optimal point x,(p) remains the

same for all p, but p must reach a positive threshhold value before

o,(p) > 0 and infeasibility is detected.

Table 5.1

c1(x) sin(x 2 +x2
2 ) + x

= 4 x 3wr2 +x2
c2 (x) = 2 (Xl+2-) + -1

r

initial guess = (0, (31/2)1/2)

p iterations inside x,(p) O,(p) constraint values

linearly constrained at x*(p)

optimization routine

0 14 (-6.3, 0.33) - 5.2 -5.3, 0.1

0.37 2 (-6.3, 0.01) - 2.3 -5.8, 0.1

3.7 1 (-6.0, 0.C) -0.47 -6.8, -0.36

(feasible point found)

Table 5.2

cl(X) = (x1/2-3) x1 + 2x2  -1

c2(x) = x1 + (x2/2-3) x2 + 2x3  -1

c3 (x) = x2  + (x3/2-3) x3 + 2x4  -1

c4(x) = x3  + (x4/2-3) x4 + 2x5  -1

c5(x) = x4 + (x5/2-3) x5  -1

initial guess = (1, 1, 1,1,1)

I
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p iterations inside x.(P) 0.(p) constraint values

linearly constrained at x,(p)

optimization routine

0 1 (2, 0, 0, 0, 1) -7.5 -5,1-1,1,-3.

0.37 2 (1.3,Q.7,0.3,0.2,0.3) -4.9 -2.5,-1,-0.7,

-0.6,-1.7
(feasible point found)

Table 5.3 2

cl(X) = xI + 2x22

c2(x) = x12 + 2x2 + x33 -8

c3(x) = (xl-1)2 + (2x2- 21/2)2 + (x3-5)
2 -4

initial guess = (1.0,0.7,5.0)

p iterations inside x.(p) O.(p) constraint values

linearly constrained at x.(p)

optimization routine

0 4 (0.3,0.3,1.5) 1.7 -3.7, -3.7, 9.1

(concluded infeasible)

I

I
K . . . . . . , .- . . Mw
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Table 5.4
10

c1(x) = quadratic with minimum value of 1 at x :0 e R

c2(x), ..., c10 (x) = quadratic with minimum value of -1 at x = 0 e

initial guess = (1,1,...1)

p iterations inside X,(p) c,(p) constraint values

linearly constrained at x,(p)

optimization routine

0 1 -(0,0,...0) -9.0 (i,-I,-1,...

0.4 I(0 0 . .) -3.7 (1,-1,-1,.....,-I)

4.0 I( , ,. . ) 11.2 ( , i - . ., 1

I
Kl
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6. Summary and directions for further work

We have presented a new class of algorithms (Algorithm 2.3) for

finding a feasible point or determining infeasibility of a set of

nonlinear inequality constraints

ci (x)  5 O, i = I, .... m

subject to satisfying a set of linear inequality constraints

tj(x) ! 0, j k

which are known to be feasible (problem (1.211)). Our class of

algorithms consists of solving a series of problems of the form

m 4(x'p) = - m w(p'ci(x)) (6.1)
x Rn P i=1

subject to ti(x) 0, j = 1, ..., k

for increasing values of the nonnegative parameter p, where w is a

weighting function obeying Definition 2.1. We have shown that in

almost all cases (the lone exception being a problem which is exactly

feasible, i.e., feasible but with no point where all the constraints

are negative) that once p reaches or exceeds a finite value, the answer

to (6.1) will either be a feasible point or establish infeasibility of

our problem. This may depend, however, on the ability of our algorithm

for (6.1) to find the global solution to this problem. An initial

computer implementation of our algorithm using w(y) = ey - 1 has

successfully solved a wide range of feasible and infeasible problems.

We are actively continuing work on many aspects of this project.

Foremost is the improvement of the computer implementation of Algorithm

2.3. The main part of this job is the continued development of a

linearly constrained optimization routine which works on nonconvex as

well as convex problems and attempts to find the global minimum. We

Iti
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also intend to experiment with other choices of the weighting function

w(y) as indicated in Section 4, and with other strategies for increas-

ing the parameter p including the final one indicated in Section 5.

Ultimately we hope to develop reliable and extensively tested soft-

ware for solving problem (1.211).

A second remaining aspect of our work is to compare our algorithm

with other approaches that can be used to solve the feasibility problem.

In particular, we have in mind approaches involving non-differentiable

optimization (e.g., the minimax formulation of equation (2.3)) or

optimization subject to nonlinear constraints (e.g., the fo. iulation of

Bertsekas[ 1]). We would naturally be interested in comparison with

any other algorithm which solves the feasibility problem.

Finally, we would like to extend the work of this paper to

cover a broader class of feasibility problems. In particular, we

have excluded equality constraints from our consideration so far.

While the addition of linear equality constraints causes no change

to our theory and very little to our software, how to handle nonlinear

equality constraints is far less obvious. Certainly a nonlinear

equality constraint c1(x) = 0 can be equivalently expressed as the

two inequality constraints

c1(x) 5 0 (6.2)

-c1(x) : 0

However, a system of inequality constraints including (6.2) is

exactly the type which may give our algorithm trouble, because any

feasible point will have to be exactly feasible. The situation may

not be as bad as this; in particular, a generalization of the second

pp

i-
I I
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part of Example 3.7 shows that if a system of inequality constraints

contains only pairs of the type (6.2) and is feasible, then the x,(p)

produced by Algorithm 2.3 will be feasible for any p > 0. However,

if standard inequality constraints are included as well, then x,(p)

may be feasible only in the limit as p-+-. Of course, if we stop

our algorithm when ',(p) > 0 or x,(p) is within 6 of feasibility

for some 6 > 0 (stopping criteria 3.16)) then it will terminate for

finite p on these problems as well, and the practical question is

whether p has to grow too large. It will be interesting to see how

our computer algorithm performs on systems with equality constraints

expressed in form (6.2), and also to see whether any other approaches

lead to a better treatment of equality constraints.
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